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Introduction 

Mathematician Benoît Mandelbrot (1924-2010) coined the 
term “fractal” in 1975, in order to describe complex irregular 
patterns and structures found in mathematics and in nature, 
whose complex geometry cannot be characterized by tradition-
al Euclidean geometry, both locally and globally (Mandelbrot 
1982). The central concept in fractal geometry is self-similarity 
or scale invariance. 

An object is self-similar if it can be decomposed into small-
er copies of itself (the structure of the whole is contained in 
its parts) (Mandelbrot 1982; Falconer 2003). Not all irregular 
shapes found in nature are necessarily fractals (Losa 2009). 
Monofractal objects are mainly characterized by four properties: 
a) irregularity of the shape; b) self-similarity of the structure; c) 
non-integer or fractional dimension; d) complexity (Mandelbrot 
1982; Reljin & Reljin 2002; Falconer 2003; Grizzi et al 2005). 
Because monofractals have the same scaling properties, char-
acterized by a single singularity exponent, they are considered 
as homogeneous objects (Mandelbrot 1982). A monofractal is a 
set for which the Hausdorff-Besicovitch dimension (Dh) strict-
ly exceeds its topological dimension (DT) (Mandelbrot 1982).

In Euclidian geometry, for the topologic objects, the dimension 
is an integer (0 for the point, 1 for a straight line, 2 for a plain 
surface, and 3 for a three-dimensional volume). For instance, 
the point is dimensionless, since the point is not a continuum 
and cannot be divided, and thus, both Euclidean and topological 

dimensions are the same,   equal to zero (Nilsson 2007; Reljin 
& Reljin 2002).

Euclidean geometry is suited for quantifying objects that are 
ideal, man-made, or regular (Reljin & Reljin 2002; Grizzi et al 
2005). Standard shapes of Euclidean geometry such as a straight 
line, polygons, conics, polyhedra, spheres, torus etc. are char-
acterized by having integer dimensionality. The Hausdorff–
Besicovitch dimension Dh, introduced by mathematicians Felix 
Hausdorff and Abram S. Besicovitch is a quite complex defini-
tion, but it has the advantage of being defined for any set and 
can be expressed as the logarithmic ratio between the number 
N of an object’s internal homotheties and the reciprocal of the 
common ratio r of this homothety (Lopes & Betrouni 2009):
	
	 (1)

where the homothety term could be associated to a reduction term.

Multifractal objects can be considered as an infinite set of in-
terwoven monofractals of different dimensions, being intrinsi-
cally more complex and inhomogeneous than monofractals. A 
multifractal object is always invariant by translation. The mono-
fractal and multifractal analyses depend on the experimental 
and methodological parameters involved such as: diversity of 
samples, image acquisition, type of image, image processing, 
monofractal and multifractal analysis methods, including the 
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algorithm and specific calculation used etc. (Falconer 2003; Xia 
et al 2006; Nilsson 2007; Perfect et al 2009; Ţălu 2011; Ţălu 
& Giovanzana 2011; Haidekker 2011).

Self-similarity may be manifested as: a) exact self-similarity — 
this is the strongest type of self-similarity when the fractal ap-
pears identical in all scales; b) quasi self-similarity — this is a 
loose form of self-similarity when the fractal appears approxi-
mately (but not exactly) identical at different scales and may 
contain small copies of the entire fractal in distorted and degen-
erate forms; c) statistical self-similarity — this is the weakest 
type of self-similarity when the fractal has numerical or statis-
tical measures which are preserved across scales. Random (sto-
chastic) fractals are examples of fractals which are statistically 
self-similar, but neither exactly nor quasi-self-similar; d) quali-
tative self-similarity: as in a time series; e) multifractal scaling: 
characterized by more than one fractal dimension or scaling rule.

Over the last few decades, different methods have been proposed 
and applied extensively in the biological systems to evaluate 
the self-organized structures in multiple hierarchical levels, 
concerning the complexity of their shape (geometrical or spa-
tial complexity) and functions (behavioral complexity) (Grizzi 
et al 2005). These irregular forms and structures, with a high 
degree of geometrical complexity, non-smoothness and frag-
mentation, that operate at different spatial and temporal scales, 
are not completely understood by classical methods, but can be 
analyzed and reproduced in much detail if they are considered 
as monofractal or multifractal objects (Kenkel & Walker 1996; 
Yu et al 2001; Reljin & Reljin 2002; Losa et al 2005; Nailon 
2010; Mirvald et al 2011).

As no biological entity corresponds to a regular Euclidean shape, 
their dimension is always expressed by a non-integer (fractal 
dimension) falling between two integer topological dimensions 
(Grizzi et al 2005). At the same time, the concepts derived from 
fractal and chaos theory are fundamental to the description and 
modelling of scale related phenomena in biology and medicine 
(Havlin et al 1995; Kenkel & Walker 1996).

Biofractals are the fractal textures/contours in biology whose 
properties aid in the classification of biological and medical 
data and images (Sztojánov et al 2009). Deterministic fractals 
(algebraic and geometric fractals) are artificially generated 
structures obtained using exact rules and these fractals are ex-
act self-similar. Algebraic fractals are created by using nonlin-
ear processes in n-dimensional spaces, being the biggest class 
of fractals. Geometric fractals are generated by geometric pat-
tems and for their construction two basic components are re-
quired: an initiator and a generator. Fractals from nature are 
non-deterministic, they are not exact self-similar with a regu-
lar structure as deterministic fractals, but show statistical self-
similarity. This means that a magnification of a small part of 
the fractal will show similar statistical properties as the whole 
fractal, but not exactly the same (Nilsson 2007). Mathematical 
objects are deterministically invariant or self-similar over an 
unlimited range of scales. Biological components are statisti-
cally self-similar only within a fractal domain defined by upper 
and lower limits, in which the relationship between the scale of 

observation and the measured size or length of the object can 
be established (Losa 2009).

In order to obtain a set for analysis, the image must be seg-
mented, that is, divided into the feature (set) and background. 
Whereas binary images allow quantitative analysis of the shape 
of a feature, the methods that operate on gray-scale images fo-
cus more on the texture (Haidekker 2011).

Monofractal Analysis 
The monofractal dimension (referred to as FD or D) contains 
information about the object’s geometrical structure and can be 
viewed as a relative measure of complexity, or as an index of the 
scale-dependency of a pattern. The monofractal dimension, as 
a fundamental analytical parameter, is always a fractional val-
ue that describes how irregular an object is and how much of 
the space it occupies. A higher monofractal dimension means 
a greater degree of complexity, a more irregular shape of the 
structure (Mandelbrot 1982; Falconer 2003; Losa et al 2005).

Methods for computing the fractal dimension 
A major disadvantage of the Hausdorff-Besicovitch dimension 
(Eq. (1)) is that in many cases it is difficult to calculate or to 
estimate by computer numerical methods. Different numerical 
methods have been developed to compute the monofractal di-
mension, each one having its own theoretic basis. These meth-
ods approximate Eq. 1 using different algorithms. That often 
leads to obtaining different monofractal dimensions for the same 
monofractal object (Lopes & Betrouni 2009). 

The most usual methods are classified into three classes (Lopes 
& Betrouni 2009): a) box-counting methods: a1) box-counting 
method; a2) differential box-counting method; a3) ‘‘extended 
counting” method; b) fractional Brownian motion methods: b1) 
variogram method; b2) the power spectrum; c) area measure-
ment methods: c1) isarithm method; c2) blanket method; c3) 
triangular prism method.

Multifractal Analysis 
A multifractal analysis provides more information about the 
space filling properties than a monofractal one. Its advantage is 
that it characterizes the local scales properties in addition to the 
global properties (Falconer 2003; Nilsson 2007).There are two 
different ways of approaching multifractal analysis (Falconer 
2003): a) a fine theory, where we examine the structure and di-
mensions of the fractals that arise themselves;  b) a coarse the-
ory, where we consider the irregularities of distribution of the 
measure of balls of small but positive radius r and then take a 
limit as r → 0.
 
A multifractal structure can be characterized as a superposition 
of homogeneous monofractal structures. The common multi-
fractal measures are the generalized fractal dimensions Dq and 
the f(α) singularity spectrum (Ţălu & Giovanzana 2011). Let 
us consider the set E(h) of Hölder exponents h of particles hav-
ing scaling indices in the interval [h, h+dh]. F(h) is defined as 
the FD of the set E(h), that has a monofractal structure (Lopes 
& Betrouni 2009).
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The pair (h, F(h)) can be related to (q, τ(q)) by means of the 
Legendre transform as (Lopes & Betrouni 2009):

			   (2)

where

			   (3)

α being an approximation of the Hölder coefficient h.

The relation between the generalized dimension Dq and the 
mass (or correlation) exponent τ(q) of the q-th order can be ex-
pressed by the following equation:

			   (4)

The generalized dimension Dq is defined for all real q and can 
be expressed as (Telesca et al 2003):

			   (5)

where: Z(q, ε) is the partition function that furnishes informa-
tion at different scales and moments; q is a real parameter that 
indicates the order of the moment of the measure and ε is the 
size of the boxes used to cover the sample.

The generalized dimensions, Dq for q = 0, q = 1 and q = 2, 
are known as the capacity (or box-counting), the information 
(Shannon entropy) and correlation dimensions, respectively. All 
dimensions are different, satisfying D0 > D1 > D2. The limits 
of the generalized dimension spectrum are D-∞ and D∞ respec-
tively, which are related to the regions of the set, in which the 
measure is “most dilute” and “most dense” respectively. f(α) is 
a continuous function of α.

In fact, the curve of spectrum f(α) is a single-humped function 
for a multifractal, while it is reduced to a point for a monofrac-
tal. The value of α gives a local information about the pointwise 
regularity, while the value of f(α) yields a global information. For 
a monofractal object D(q) is independent of q (being a constant 
for all values of q, equal to the unique monofractal dimension) 
and for a multifractal it is a monotone decreasing function of q.

Methods for computing the multifractal spectrum 
Different methods may be used to calculate the multifrac-
tal spectrum. The most usual methods are classified into two 
classes (Lopes & Betrouni 2009): a) the methods called box-
counting: a1) generalized fractal dimensions and multifractal 
spectrum; a2) the ‘‘sand box” or cumulative mass method; a3) 
the large-deviation multifractal spectrum; b) the methods based 
on wavelets: b1) methods based on the discrete wavelet trans-
form; b2) the wavelet transform modulus maxima method; b3) 
the wavelet leaders method.

Lacunarity 
The term “lacuna” comes from the Latin word lacuna, mean-
ing void, gap or hole. Lacunarity was first introduced by B. 

Mandelbrot as a means of further classifying fractals and tex-
tures which had the same fractal dimension and a very differ-
ent visual appearance (Mandelbrot 1982; Allain & Cloitre 1991; 
Ţălu & Giovanzana 2011). Beyond being an intuitive measure 
of gappiness, lacunarity measurement adds information con-
cerning to the description of a monofractal or multifractal ob-
ject (Smith et al 1996). Two different monofractal objects with 
the same monofractal dimension can have a different fractal 
lacunarity. In this way, lacunarity is a measure of the structural 
heterogeneity within a monofractal or multifractal object. If the 
fractal is dense the lacunarity is small. Lacunarity increases with 
coarseness. Moreover, lacunarity is interpreted as a measure of 
the lack of rotational or translational invariance of an image. 
There are several different methods to assess and interpret la-
cunarity. Lacunarity can also be used independently as a gen-
eral tool for describing spatial patterns.

Conclusions 
Biology and medicine are becoming increasingly quantitative 
in scope and content and are presenting challenges that require 
sophisticated image analysis and processing methods that en-
hance visual interpretation, measurement and characterization. 
In general, in order to extract the data of interest from an im-
age, multiple transformations and a hierarchy in the process-
ing steps are required.

Monofractal and multifractal theory integrates essential concepts 
for the understanding of patterns and processes in biology and 
medicine, for describing and understanding biological organ-
isms, their development and growth as well as their structural 
design and functional properties. 

The analysis and interpretation of biological and medical im-
ages using monofractal and multifractal analysis is a multi-steps 
process where the purpose is to describe, measure and quantify 
the normal state and to detect the potential abnormalities.  The 
significance and the advantage of this geometry compared to 
traditional Euclidean geometry is that it offers a new tool for 
examining the complex patterns found in biological and medi-
cal practice and it can be used as a non-invasive screening test 
to investigate the biological structures and signals.
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