Growth response and carcass characteristics of Japanese quail to Mentha piperita plant supplementation

Babak Aminzade, Behzad Karami, Elias Lotfi

Abstract. In current study, the effect of Mentha piperita plant (MPP) supplementation on performance and carcass characteristics in Japanese quail was investigated. A total of 180 quails (male and female) were carried out in completely randomized design with diet consisted of the basal diet as the control (0MPP), diets with MPP at 1.5% (15 g/kg MPP) and 3% (30 g/kg MPP). Four replicates with 15 quails were allocated to each experimental treatment and the birds were reared for 42 days. The diets were formulated according to NRC (1994) guidelines and contained 24% protein and 2900 kcal/kg ME. The results showed that weight gain, feed intake and feed conversion was significantly affected by levels of MPP (p<0.05). Quails fed with 1.5% MPP had more percentage of breast muscle compared to quails fed 0 and 3% MPP. Feed conversion ratio was significantly improved in quails received 1.5% compared to 3% (p<0.05). There was no significant difference for percentage of carcass and thigh muscle among experimental treatments. The result showed adding various levels of MPP was improved feed conversion ratio and increase body weight in Japanese quail.

Key Words: Japanese quail, performance, carcass, Mentha piperita plant.

Introduction
In general, the use of various plant materials as dietary supplements may positively affect poultry health and productivity. There are some important bioactive components such as alkaloids, bitters, flavonoids, bioflavonoids, glycosides, mucilage, saponins, tannins, coumarins, essential oils and polypeptides (Cowan 1999) in the structures of nearly all the medicinal plants. Mentha piperita plant (MPP) is one of the world’s oldest medicinal herbs and used in both Eastern and Western traditions. This plant is a perennial plant in Lamiaceae family and contains about 1.2-1.5% essential oils. The principal components of the oil are menthol (35-55%), menthone (20-30%) and menthyl acetate (3-10%) (Escop 2003). Supplementing diets with MPP addition basal requirements has been shown to enhance performance and primary immune responses by increasing number of antibody forming cells in broiler chicken. (Galib & Al-Kasse 2010; Abdulkarimi & Abdullahzadeh 2011). The immune system includes cell mediated and humoral immune responses, macrophage function and phagocytosis and improved resistance to disease (Finch & Turner 1996). In Japanese quail, as well as in chickens, medicinal plant supplementation in diet can be had effects on growth and performance. Therefore, the present study was conducted to elucidate the response of growing Japanese quail and carcass characteristics to Mentha piperita plant (MPP) supplementation.

Material and Method
Stock, husbandry and traits
A total of 180 one-day-old Japanese quails (Coturnix japonica) were randomly allocated to three treatment groups. The birds were randomly assigned, according to their initial body weights, into 3 groups with 4 replicates of 15 birds. The birds were reared in cages of identical size (100 x 100 cm floor area and 80 cm in height) for 42 days of experimental period. All the groups were subjected to similar management practices (brooding, lighting, feeding and watering) throughout the experiment except the diets offered. The birds received a diet consisted of the basal diet as the control (0MPP), diets with MPP at 1.5% (15g/kg MPP) and 3% (30g/kg MPP). Ingredients and chemical compositions of the basal diet are shown in Table 1. Crude protein contents of the diets were estimated by the method of AOAC (2005). The diets were formulated using NRC (1994) guidelines and contained 24% protein and 2900 kcal/kg ME. Quails were provided with feed and fresh water for ad libitum consumption. Body weight and feed consumption of each group were recorded weekly starting from one day of age and a sensitive electronic scale (0.01 g) was used to weigh. Growth performance was evaluated in terms of body weight gain, feed intake (FI) and feed conversion ratio (FCR). At the end of experiment, two birds from each replicate of the treatment (8 birds per each dietary treatment and 24 in total) were selected randomly and were submitted to 6 h of feed withdrawal prior to slaughter. After slaughter, carcass traits were measured on the chilled carcass after removal of feathers, head, lungs, liver, kidneys, gastrointestinal tract and abdominal fat.

Statistical analysis
The experiment was conducted as a completely randomized design. The obtained data growth performance and carcass composition were subjected to statistical analysis using the general linear model (GLM) procedures of the SAS software (SAS Institute, 2001). Significant differences among the means of treatments were determined by using Duncan test.
Table 1. Ingredients and chemical composition of base diet fed to Japanese quails

<table>
<thead>
<tr>
<th>Ingredients (Percentage)</th>
<th>Amount</th>
<th>Calculated chemical component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn (CP= 7.89%)</td>
<td>50.5</td>
<td>Metabolizable energy (kcal/kg) 2900</td>
</tr>
<tr>
<td>Soybean meal (CP= 43.68%)</td>
<td>42.03</td>
<td>Crude Protein % 24</td>
</tr>
<tr>
<td>Fish meal (CP=55.32)</td>
<td>3</td>
<td>Calcium % 0.8</td>
</tr>
<tr>
<td>Soy oil</td>
<td>2.07</td>
<td>Availability P % 0.3</td>
</tr>
<tr>
<td>Dicalcium phosphate</td>
<td>0.32</td>
<td>Sodium % 0.15</td>
</tr>
<tr>
<td>Limestone</td>
<td>1.16</td>
<td>Lysine % 1.39</td>
</tr>
<tr>
<td>Salt</td>
<td>0.3</td>
<td>Methionine % 0.5</td>
</tr>
<tr>
<td>Mineral premix ^b</td>
<td>0.25</td>
<td>Methionine + cysteine % 0.88</td>
</tr>
<tr>
<td>Vitamin premix ^b</td>
<td>0.25</td>
<td>-</td>
</tr>
<tr>
<td>DL-Methionine</td>
<td>0.12</td>
<td>-</td>
</tr>
</tbody>
</table>

^a Calculated composition was according to NRC (1994)

^b Mineral premix Premix supplied for 2.5 kg: Mn 165350 mg; Fe 250000 mg; Zn 249000 mg; Cu 40000 mg; iodine 1600 mg; choline chloride 335350 mg.

^c Vitamin Premix supplied for 2.5 kg: vitamin A 9000000 IU; vitamin D 3 2000000 IU; vitamin K 3 4000 mg; vitamin B1 1800 mg; vitamin B2 8250 mg; vitamin B3 10000 mg; vitamin B6 3000 mg; vitamin B12 1250 mg; vitamin B13 1500 mg; biotin 5000 mg.

Table 2. Effects of different levels of MPP on growth performance of Japanese quails at different periods of ages

<table>
<thead>
<tr>
<th>Treatment</th>
<th>0-21 days of age</th>
<th>21-42 days of age</th>
<th>0-42 days of age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WG</td>
<td>FI</td>
<td>FCR</td>
</tr>
<tr>
<td>0 MPP</td>
<td>107.34</td>
<td>238.97</td>
<td>a</td>
</tr>
<tr>
<td>1.5% MPP</td>
<td>113.23</td>
<td>206.61</td>
<td>b</td>
</tr>
<tr>
<td>3% MPP</td>
<td>110.67</td>
<td>200.84</td>
<td>b</td>
</tr>
<tr>
<td>SEM</td>
<td>3.94</td>
<td>4.06</td>
<td>0.017</td>
</tr>
<tr>
<td>Probability</td>
<td>0.271</td>
<td>0.023</td>
<td>0.015</td>
</tr>
</tbody>
</table>

Values in the same column with different superscripts are significantly different

1 Each value is the mean ± SEM

Table 3. Effects of different levels of MPP on percentage of carcass composition at 42 days of age

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Carcass</th>
<th>Breast</th>
<th>thigh</th>
<th>Abdominal fat</th>
<th>Liver</th>
<th>Bursa of Fabricius</th>
<th>spleen</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 MPP</td>
<td>62.61</td>
<td>20.23</td>
<td>15.02</td>
<td>1.3</td>
<td>1.86</td>
<td>0.08</td>
<td>0.05</td>
</tr>
<tr>
<td>1.5% MPP</td>
<td>65.78</td>
<td>25.17</td>
<td>15.15</td>
<td>1.22</td>
<td>1.99</td>
<td>0.09</td>
<td>0.05</td>
</tr>
<tr>
<td>3% MPP</td>
<td>64.32</td>
<td>24.53</td>
<td>15.13</td>
<td>1.19</td>
<td>2.17</td>
<td>0.12</td>
<td>0.07</td>
</tr>
<tr>
<td>SEM</td>
<td>2.09</td>
<td>0.98</td>
<td>0.84</td>
<td>0.1</td>
<td>0.05</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>Probability</td>
<td>0.392</td>
<td>0.04</td>
<td>0.93</td>
<td>0.26</td>
<td>0.03</td>
<td>0.29</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Values in the same column with different superscripts are significantly different

1 Each value is the mean ± SEM

Results and Discussion

Performance traits

The effect of MPP Supplementation on performance is shown in Table 1. The obtained results in this study showed that there was no difference among all treatments for weight gain in 0-21 and for feed intake in 21-42 days of age (P>0.05). But for the overall experimental period (0-42 days of age), using MPP in diet of Japanese quail had significant effects on weight gain, feed intake and feed conversion. No work containing detailed effect of MPP (performance and carcass characteristics) could be found for Japanese quail. Therefore, the results of the current study compared with the other poultry species. The results of the present study are in agreement with the observations reported by Ankari et al (2004), Ocak et al (2008) and Nobakht et al (2011) in broiler who reported that use of medicinal plant supplement could significantly improve the growth of broilers. The lowest amount of weight gain and the worst feed conversion were observed in the control group, whereas the highest amount of weight gain and the best feed conversion were observed in groups containing MPP. Using more than 1.5% of MPP did not have any significant effects on feed intake and feed conversion in 0-21 days of age but significantly difference was observed between levels of 1.5% and 3% MPP in 21-42 days of age for feed conversion ratio. According to studies of Souri et al (2004) and Jazani et al (2009) antimicrobial, antioxidant,
phenolic substances, essential oils, lectins and polypeptides in the structures of medicinal plants such as MPP may be the main cause of improvements in weight gain. The mechanism of action of medicinal plant has not been very clearly defined yet but there are suggestions that the antioxidants can prevent nutrients oxidation and the antimicrobial component can decrease the harmful bacterial populations in the gastrointestinal tract of birds. Lee et al (2003) reported that the presence of harmful bacterial populations in the gastrointestinal tract may cause the breakdown of amino acids and thereby reduce their absorption. Therefore, the antimicrobial properties of MPP can reduce the harmful bacterial populations in the gastrointestinal tract and improve the levels of absorbed amino acids.

Carcass characteristics

The effect of MPP Supplementation on carcass characteristic is shown in Table 2. However, MPP supplementation had no significant effect on carcass composition, but there were numerical increases when MPP was added to diets, compared to the control group. The improvement of carcass traits by using of MPP is in agreement with the experimental results of Nobakht et al (2010) and Nobakht (2011) who reported that a blend of *M. pulegium* L. with another medicinal herb significantly improved the carcass traits such as breast muscle of broilers. The carvacrol in *M. pulagum* plant has stimulatory effects on pancreatic secretions by increasing the secretions of digestive enzymes more amounts of nutrients like amino acids can be digested and absorbed from the digestive tract and thereby improves carcass traits. Although, MPP had no significant effect on abdominal fat but there was a linear decrease of abdominal fat with the increase in MPP which is similar to the result of Yusrizal & Chen (2003), Norbakht (2011) and Hosseini Mansoub (2011). Also on the contrary with our result, Increased abdominal fat in broilers fed by thyme leaves is previously reported (Ocak et al 2008). The effect of supplements was not significant on the relative weights of the internal organs except liver. Similar to the results obtained in this study, Toghyani et al (2010), Galib & Kassie (2010) and Hosseini Mansoub (2011) also showed that liver weight of control group was lower than those of the other group containing medicinal plant. Supplementing dietary MPP had no significant effect on the relative weights of the bursa and spleen (P>0.05). According to our knowledge, no publications could be found about the effect of dietary MPP on lymphoid organs such as Bursa of Fabricius and spleen and this it’s difficult to compare with other study. The high value of internal organ observed in quails fed the MPP diet may be related to the reported properties of menthol.

Conclusion

In conclusion, supplementation medicinal plant such as *Mentha piperita* can be helpful for poultry nutritionist although more detailed studies are still needed to elucidate the effect of *Mentha piperita* plant on poultry nutrition under various circumstances.

References

Authors

• Babak Aminzade, Department of Animal Science, Gorgan University of Agricultural Sciences and Natural Resources, Iran, PO Box 386, Shahid Beheshti Street, Babak_Aminzade@yahoo.com

• Behzad Karami, Department of Animal Science, Gorgan University of Agricultural Sciences and Natural Resources, Iran, PO Box 386, Shahid Beheshti Street, Behzadkarami1363@yahoo.com

• Elias Lotfi, Young Researchers Club, Gorgan Branch, Islamic Azad University, Gorgan, Iran, e-mail: Elias_lotfi@gmail.com

Citation

Editors
I. Valentin Petrescu-Mag and Botha Miklos

Received
23 May 2012

Accepted
25 June 2012

Published Online
30 June 2012

Funding
None reported

Conflicts / Competing Interests
None reported